Structure Reports

Online
ISSN 1600-5368

Nadim S. Shaikh, ${ }^{\text {a }}$ Dale C. Swenson ${ }^{\text {b }}$ and Hans-J. Lehmler ${ }^{\text {a * }}$

${ }^{\text {a }}$ The University of lowa, Department of Occupational and Environmental Health, 100 Oakdale Campus, 124 IREH, lowa City, IA 52242-5000, USA, and ${ }^{\text {b }}$ The University of lowa, Department of Chemistry, 429 Chemsitry Building, lowa City, IA 52242, USA

Correspondence e-mail:
hans-joachim-lehmler@uiowa.edu

Key indicators

Single-crystal X-ray study
$T=190 \mathrm{~K}$
Mean $\sigma()=0.000 \AA$
Disorder in main residue
R factor $=0.034$
$w R$ factor $=0.089$
Data-to-parameter ratio $=12.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

2,3,6-Trichloroiodobenzene

The title compound, $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Cl}_{3} \mathrm{I}$, is a building block of polychlorinated biphenyls (PCBs). In the crystal structure, the molecule is disordered over three orientations.

Comment

Trichloroiodobenzenes are important starting materials for the synthesis of ortho-substituted polychlorinated biphenyls (PCBs) of environmental relevance (Kania-Korwel et al., 2005). To date, the crystal structures of only two trichloroiodobenzenes, namely 2,4,5-trichloroiodobenzene (KaniaKorwel, Lehmler et al., 2003) and 2,4,6-trichloroiodobenzene (Kania-Korwel, Robertson et al., 2003), have been published. We report here the crystal structure of 2,3,6-trichloroiodobenzene, (I), to add to the available database of crystal structures of chlorinated iodobenzenes.

(I)

The molecule of compound (I) is disordered over three orientations in the solid state; one orientation is shown in Fig. 1. The second orientation is obtained by an approximate twofold rotation about an axis passing through the mid-point of the $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 4-\mathrm{C} 5$ bonds of main orientation. The third orientation is approximated by a twofold rotation about the $\mathrm{C} 1-\mathrm{I} 1$ bond direction. As for 2,4,5-trichloroiodobenzene (Kania-Korwel, Lehmler et al., 2003), the disordered packing of (I) in the solid state is likely a result of the unsymmetrical chlorine substitution.

Experimental

The title compound, (I), was synthesized by chlorination of 2,6 dichloroiodobenzene (Waller \& Mash 1997). Colourless blades were obtained upon recrystallization from hot methanol.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Cl}_{3} \mathrm{I} \\
& M_{r}=307.33 \\
& \text { Orthorhombic, Pca2 } \\
& a=16.4873(16) \AA \\
& b=4.0530(4) \AA \\
& c=12.7746(13) \AA \\
& V=853.64(15) \AA^{3}
\end{aligned}
$$

$$
Z=4
$$

Received 18 September 2006 Accepted 20 September 2006

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: multi-scan (SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\min }=0.404, T_{\max }=0.802$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0486 P)^{2}\right. \\
& +0.953 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.008 \\
& \Delta \rho_{\max }=0.74 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.50 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 924 \text { Freidel pairs } \\
& \text { Flack parameter: } 0.30 \text { (4) }
\end{aligned}
$$

20082 measured reflections 1946 independent reflections 1678 reflections with $I>2 \mathrm{u}(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=27.5^{\circ}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.089$
$S=1.04$
1946 reflections
155 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 6$	$1.392(18)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.414(16)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.405(9)$	$\mathrm{C} 3-\mathrm{Cl} 3$	$1.718(10)$
$\mathrm{C} 1-\mathrm{I} 1$	$2.131(12)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.346(9)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.370(18)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.387(16)$
$\mathrm{C} 2-\mathrm{Cl} 2$	$1.710(15)$	$\mathrm{C} 6-\mathrm{Cl} 6$	$1.719(11)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$118.9(13)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl} 3$	$122.0(9)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{I} 1$	$120.8(8)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Cl} 3$	$117.3(9)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{I} 1$	$120.3(12)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.2(12)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.7(13)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.2(12)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 2$	$120.8(10)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$120.3(9)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 2$	$119.5(13)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{Cl} 6$	$119.8(9)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.7(9)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{Cl} 6$	$119.8(9)$

The molecule is disordered over three orientations. The site occupancies refined to $0.625(5): 0.339$ (3):0.036 (3) and were restrained to sum to 1.0. The molecular geometries were restrained to be the same. 'Partial' atoms occupying the same general site (e.g, I1, Cl^{\prime}, and $\mathrm{I}^{\prime \prime}$) were constrained to have the same anisotropic displacement parameters, except $\mathrm{Cl}^{\prime \prime}\left[U_{\text {iso }}\left(\mathrm{Cl}^{\prime \prime}\right)=1.2 U_{\text {eq }}\left(\mathrm{C}^{\prime \prime}\right)\right]$. The three orientations were restrained to be planar. An anti-bumping restraint was imposed on $\mathrm{Cl}^{\prime \prime} \cdots \mathrm{Cl}^{\prime \prime \mathrm{i}}$ [symmetry code: (i) $\frac{1}{2}+x,-y$, $z]$. The value of the Flack parameter indicates partial inversion twinning. The riding model was used to position H atoms and to set their isotropic thermal parameters.

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997);

Figure 1
Displacement ellipsoid plot of (I) (50\% probability level). Only the main orientation is shown.
program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: $\operatorname{SHELXTL}$; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This research was supported by grants ES05605, ES012475 and ES013661 from the National Institute of Environmental Health Sciences, NIH.

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kania-Korwel, I., Hornbuckle, K. C., Peck, A., Ludewig, G., Robertson, L. W., Sulkowski, W. W., Espandiari, P., Gairola, C. G. \& Lehmler, H.-J. (2005). Environ. Sci. Technol. pp. 3513-3520.
Kania-Korwel, I., Lehmler, H.-J., Robertson, L. W. \& Parkin, S. (2003). Acta Cryst. E59, o1048-o1049.
Kania-Korwel, I., Robertson, L. W., Lehmler, H.-J. \& Parkin, S. (2003). Acta Cryst. E59, o1770-o1771.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Waller, S. C. \& Mash, E. A. (1997). Org. Prep. Proced. Int. 29, 679-685.

