organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Nadim S. Shaikh,^a Dale C. Swenson^b and Hans-J. Lehmler^a*

^aThe University of Iowa, Department of Occupational and Environmental Health, 100 Oakdale Campus, 124 IREH, Iowa City, IA 52242-5000, USA, and ^bThe University of Iowa, Department of Chemistry, 429 Chemsitry Building, Iowa City, IA 52242, USA

Correspondence e-mail: hans-joachim-lehmler@uiowa.edu

Key indicators

Single-crystal X-ray study T = 190 KMean σ () = 0.000 Å Disorder in main residue R factor = 0.034 wR factor = 0.089 Data-to-parameter ratio = 12.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,3,6-Trichloroiodobenzene

The title compound, $C_6H_2Cl_3I$, is a building block of polychlorinated biphenyls (PCBs). In the crystal structure, the molecule is disordered over three orientations.

Received 18 September 2006 Accepted 20 September 2006

Comment

Trichloroiodobenzenes are important starting materials for the synthesis of *ortho*-substituted polychlorinated biphenyls (PCBs) of environmental relevance (Kania-Korwel *et al.*, 2005). To date, the crystal structures of only two trichloroiodobenzenes, namely 2,4,5-trichloroiodobenzene (Kania-Korwel, Lehmler *et al.*, 2003) and 2,4,6-trichloroiodobenzene (Kania-Korwel, Robertson *et al.*, 2003), have been published. We report here the crystal structure of 2,3,6-trichloroiodobenzene, (I), to add to the available database of crystal structures of chlorinated iodobenzenes.

The molecule of compound (I) is disordered over three orientations in the solid state; one orientation is shown in Fig. 1. The second orientation is obtained by an approximate twofold rotation about an axis passing through the mid-point of the C1-C2 and C4-C5 bonds of main orientation. The third orientation is approximated by a twofold rotation about the C1-I1 bond direction. As for 2,4,5-trichloroiodobenzene (Kania-Korwel, Lehmler *et al.*, 2003), the disordered packing of (I) in the solid state is likely a result of the unsymmetrical chlorine substitution.

Experimental

The title compound, (I), was synthesized by chlorination of 2,6dichloroiodobenzene (Waller & Mash 1997). Colourless blades were obtained upon recrystallization from hot methanol.

Crystal data $C_{6}H_{2}Cl_{3}I$ $M_{r} = 307.33$ Orthorhombic, $Pca2_{1}$ a = 16.4873 (16) Å b = 4.0530 (4) Å c = 12.7746 (13) Å V = 853.64 (15) Å³

Z = 4 $D_x = 2.391 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 4.61 \text{ mm}^{-1}$ T = 190 (2) K Blade, colourless $0.24 \times 0.09 \times 0.05 \text{ mm}$

© 2006 International Union of Crystallography All rights reserved

Data collection

Nonius KappaCCD diffractometer φ and ω scans Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.404, T_{\max} = 0.802$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.089$ S = 1.041946 reflections 155 parameters H-atom parameters constrained 20082 measured reflections 1946 independent reflections 1678 reflections with I > 2u(I) $R_{int} = 0.027$ $\theta_{max} = 27.5^{\circ}$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0486P)^2 \\ &+ 0.953P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.008 \\ \Delta\rho_{\text{max}} &= 0.74 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.50 \text{ e } \text{\AA}^{-3} \\ \text{Absolute structure: Flack (1983),} \\ 924 \text{ Freidel pairs} \\ \text{Flack parameter: } 0.30 \text{ (4)} \end{split}$$

Table 1 Selected geometric parameters (Å, °).

C1-C6	1.392 (18)	C3-C4	1.414 (16)
C1-C2	1.405 (9)	C3-Cl3	1.718 (10)
C1-I1	2.131 (12)	C4-C5	1.346 (9)
C2-C3	1.370 (18)	C5-C6	1.387 (16)
C2-Cl2	1.710 (15)	C6-Cl6	1.719 (11)
C6-C1-C2	118.9 (13)	C2-C3-Cl3	122.0 (9)
C6-C1-I1	120.8 (8)	C4-C3-Cl3	117.3 (9)
C2-C1-I1	120.3 (12)	C5-C4-C3	119.2 (12)
C3-C2-C1	119.7 (13)	C4-C5-C6	121.2 (12)
C3-C2-Cl2	120.8 (10)	C5-C6-C1	120.3 (9)
C1-C2-Cl2	119.5 (13)	C5-C6-Cl6	119.8 (9)
C2-C3-C4	120.7 (9)	C1-C6-Cl6	119.8 (9)

The molecule is disordered over three orientations. The site occupancies refined to 0.625 (5):0.339 (3):0.036 (3) and were restrained to sum to 1.0. The molecular geometries were restrained to be the same. 'Partial' atoms occupying the same general site (*e.g.*, 11, Cl2', and I1'') were constrained to have the same anisotropic displacement parameters, except Cl3'' [U_{iso} (Cl3'') = 1.2 U_{eq} (C3'')]. The three orientations were restrained to be planar. An anti-bumping restraint was imposed on Cl3''... Cl6''i [symmetry code: (i) $\frac{1}{2} + x$, -y, z]. The value of the Flack parameter indicates partial inversion twinning. The riding model was used to position H atoms and to set their isotropic thermal parameters.

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997);

Figure 1

Displacement ellipsoid plot of (I) (50% probability level). Only the main orientation is shown.

program(s) used to solve structure: *SHELXTL* (Sheldrick, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This research was supported by grants ES05605, ES012475 and ES013661 from the National Institute of Environmental Health Sciences, NIH.

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kania-Korwel, I., Hornbuckle, K. C., Peck, A., Ludewig, G., Robertson, L. W., Sulkowski, W. W., Espandiari, P., Gairola, C. G. & Lehmler, H.-J. (2005). *Environ. Sci. Technol.* pp. 3513–3520.
- Kania-Korwel, I., Lehmler, H.-J., Robertson, L. W. & Parkin, S. (2003). Acta Cryst. E59, o1048–01049.
- Kania-Korwel, I., Robertson, L. W., Lehmler, H.-J. & Parkin, S. (2003). Acta Cryst. E59, 01770–01771.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Waller, S. C. & Mash, E. A. (1997). Org. Prep. Proced. Int. 29, 679-685.